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ABSTRACT 

This paper provides an error analysis for a typical two 
camera, 3D triangulation system used in automotive 
crash test analysis. Accuracy of this 3D measurement 
for analysis of simple planar motion is compared to the 
accuracy expected from a comparable single sensor 
analysis system using calibration objects within the field 
of view. Both approaches are shown to produce errors 
on the order of 1 mm, object to object or frame to frame. 
This work also demonstrates how to utilize basic 
triangulation error equations to start from a given 
accuracy requirement and flow down an error budget in 
order to develop the basic sensor geometry and 
measurement requirements. The current work extends 
previous theoretical work which developed the basic 
error propagation theory for 3D triangulation. 

1. INTRODUCTION 

Automotive crash test facilities use high speed imaging 
sensors (cameras) to generate image sequences for 
quantitative motion analysis. The motion analysis is 
intended to determine position versus time, and hence 
velocity and acceleration versus time, of vehicle 
occupants during various crash scenarios. Traditionally, 
single camera solutions have been the norm, resulting in 
the analysis of planar motion. Recently, interest has 
developed in the use of multiple imaging sensors to 
provide triangulation capability to compute three 
dimensional positions. The first published work on this 
topic in the automotive field was by Walton [1]. Parallel 
work in the defense community was performed by 
Sanders-Reed [2]. While these efforts resulted in a 3D 
position estimation capability, the accuracy of results 
was difficult to predict. Recent work by Sanders-Reed [3] 
has provided an analytical framework with which to 
analyze specific experimental configurations. Other 
applications of multi-sensor triangulation include particle 
flow velocimetry and analysis [4,5]. The current paper 
simplifies and uses the results of [3] to evaluate the 
accuracy associated with typical 2 camera, crash test 
scenarios and conversely describes the process of 
designing a test setup to achieve a specified level of 
accuracy. 

We will address two problems in this paper. The first and 
simpler problem is to estimate the 3D position accuracy 
which can be obtained from a given test setup. In this 
case, the test geometry, camera parameters, and 
measurement errors are given, and we desire to 
determine the accuracy of our 3D position 
measurement. This problem also allows us to compare 
the accuracy obtained from a 2 camera triangulation 
system, with that obtained using a more traditional, 
single camera system and assuming planar motion. The 
second problem begins with a stated 3D position 
measurement accuracy requirement. From that 
requirement, we flow down an error budget to the 
various contributing measurements and the geometric 
setup, in order to design a test which meets the 
accuracy requirement. However, in order to tackle these 
two problems, we need first to simplify the results 
obtained in reference [3]. 

We begin, in section 2, by re-writing the key results from 
reference [3] in order to highlight the functional form of 
the results. We extend the previous work by generating 
more generalized plots of the coefficients which lend 
themselves to more practical application. Section 3 
describes how to determine the 3D position accuracy 
resulting from a given test setup, while section 4 
describes how to flow down an error budget in order to 
meet a given accuracy requirement. 

2. TWO-SENSOR ERROR ANALYSIS 

Accuracy of 3D position estimates of a target, using 
multi-sensor triangulation techniques, is determined by 
the accuracy of sensor location and sensor to target Line 
Of Sight (LOS) knowledge, and the geometry of the 
measurement system. For each sensor, we need to 
know the 3, sensor location parameters (x,y,z), and the 
LOS vector (azimuth, θ and elevation, ϕ) from the sensor 
to the target (Figure 1). This is obvious from the 3D 
triangulation equations (1)-(4) (equations (6), (7), (3), (2) 
from reference [3]), in which the subscripts 1 and 2 refer 
to sensors 1 and 2. 



Figure 1. Definition of coordinate system showing target location (xt, yt, 
zt) and sensor location (xi, yi, zi): a) x-y plane view showing azimuth 
angle and horizontal range, b) x-z plane view showing elevation angle, 
c) x-y plane showing sensor to sensor separation angle. 
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These five parameters themselves may each depend on 
several other measurements, each of which has an error 
component (Figure 2). For example, knowledge of the 
LOS to the target depends on both knowledge of the 
LOS of the sensor (which may not be pointed directly at 
the target), knowledge of the target location within the 
image, and the relation between these two parameters. 
Note that Figure 2 is not comprehensive and in fact, 
various different measurement parameters will be 
introduced depending on whether the sensors are on 
fixed tripods or tracking mounts, whether the sensor is 
on a moving platform or a fixed pedestal. For the 
applications described in this paper, we assume that the 
cameras are mounted on fixed tripods such that the 
sensor location, and the sensor boresight pointing 
remain fixed during a given test. This leaves the target 
location within the imagery as the only dynamic 
measurement which changes over time. 

In order to relate measurement errors to errors in our 
final position estimates, we begin by assuming that 
measurement errors obey gaussian statistics. We also 
assume that measurement errors are independent for 
each sensor, and that the standard deviation of sensor 
location measurements is the same in each axis. Next 
we define some notation: The standard deviation of 
sensor position measurements is σpos, the standard 
deviation of azimuth measurements as σθ, and the 
standard deviation of elevation measurements as σϕ. We 
can compute the horizontal sensor to target range, r for 
each sensor. The standard deviation of this result will be 

σr. We will compute the target location (xt,yt,zt). Each of 
these values with have an associated error value: σxt, 
σyt, σzt. 
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 Figure 2. Typical contributing error sources for 3D position estimation 

The preceding assumptions lead to the key results of 
reference [3]: the error propagation equations (22), (23), 
(24), and (20), which relate the measurement errors to 
computed values of xt, yt, r, zt, respectively. These 
equations include detailed formulae for computation of 
the coefficients of the error terms as complex sums of 
various partial derivatives. In order to show the basic 
functional form of the error propagation equations, and 
to support tabulating values for the coefficients, the 
reference [3] equations have been re-written with the 
coefficients as simple scalar constants in equations (5)-
(8): 
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The error coefficients are functions of the sensor-to-
sensor separation angle (Figure 1). The coefficients of 
the LOS errors are also linear functions of the sensor to 
target range, as indicated by writing them as (rc). 
Reference [3] contains graphs of the values of the 
coefficients as a function of the sensor-to-sensor 
separation angle, however those graphs must be used 
with care. The graphs are of the c and (rc) values in the 
equations above, but it is not clear in that paper whether 
the graphs are of c, (rc), or of c2, (rc)2. Reference [3] 
also indicates that the coefficient values in the graphs 
were computed for a sensor to target range of 5 units, 
and that the coefficients of the LOS errors must be 
scaled linearly with range. Equations (5)-(8) are written 
to make this scaling factor explicit, visible, and separate 
from the c values. 



The position and azimuth coefficients for the x and y 
position error exhibit some dependence not only on the 
sensor-to-sensor separation angle, but also on the 
absolute azimuth angle. This is a rather artificial effect 
which can be altered by choice of the origin and the zero 
azimuth direction. While this effect may seem strange, 
one should note that any decrease in error in the x 
position is offset by a corresponding increase in the error 
in the y direction. In fact, this effect disappears when 
measuring the sensor to target range error, since this 
calculation requires both x and y target position 
estimates. 
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The graphs in reference [3] show multiple curves for 
each coefficient (for the x and y position error), 
depending on the absolute orientation of the sensor pair 
relative to the coordinate axes. A more useful graph for 
most practical applications, would average the curves for 
the different absolute orientations. When this is done, 
one finds that cx,pos = cy,pos and cx,θ = cy,θ. Performing this 
averaging and factoring out the range dependence as 
shown in equations (5)-(8), gives the graphs shown in 
Figure 3 for the coefficients in equations (5), (6). 

Figure 3. Error propagation coefficients for equations (5), (6), relating 
sensor location errors in meters and LOS errors in degrees to target 
(x,y) location estimate errors in meters. 

As already discussed, the sensor to target horizontal 
range estimates are independent of absolute sensor 
positioning relative to the coordinate system, so the 
averaging performed to generate the curves in Figure 3 
is not necessary. Figure 4 shows curves for the range 
coefficients in equation (7). Figure 5 shows plots for the 
target z position error coefficients from equation (8). 

 

Figure 4. Error propagation coefficient for equation (7) relating sensor 
location errors in meters and LOS errors in degrees to sensor to target 
horizontal range estimate errors in meters. 
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These graphs emphasize the well known fact that the 
geometry least sensitive to measurement errors places 
the cameras at a 90 degree separation angle with a 0 
degree elevation angle. The error coefficients do not 
begin to grow rapidly until the separation angle 
decreases to less than 40 degrees. 
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Figure 5. Error propagation coefficient for equation (8), relating sensor 
location errors in meters and LOS errors in degrees to target z position 
estimate errors in meters. 



In the following sections we will read error coefficient 
values off of these graphs and use them in equations 
(5)-(8) in order to generate error estimates. 

3. EVALUATION OF RANGE ACCURACY 

In many test scenarios, most of the parameters are fixed 
and the best that we can do is evaluate the accuracy of 
our 3D position estimates. The geometry may be 
dictated by viewing requirements: camera-to-camera 
baseline may be constrained by spacing considerations 
or Line Of Sight (LOS) limitations, while sensor to target 
range is constrained by the need to cover the Field Of 
View (FOV) of motion. Camera parameters, such as 
pixel count, are determined by currently available 
cameras and limited by state-of-the-art in technology, or 
acquisition cost. 

In this section we will define a typical automotive crash 
test geometry and camera parameters, assign an 
achievable accuracy limit to various parameters, such as 
sensor location and LOS pointing, and target track 
accuracy. From this we will determine the accuracy of 
our 3D position estimates. 

LOS =
41.93°
LOS =
41.93°

We will examine the accuracy of both absolute 3D 
position measurement and relative position 
measurement. Relative position measurement is by far 
the most common scenario, in which one wishes to 
measure the position of one object relative to another in 
the same test sequence using the same sensors 
(cameras). This is the case when measuring the position 
of a dummy relative to a portion of the vehicle. Absolute 
position measurement is necessary when comparing the 
position of an object as measured by two different 
sensor systems, such as a camera system and a radar 
system or an on-board Inertial Navigation Unit (INU). 

Perhaps the most important relative position estimate is 
the measurement of a single target in each of a series of 
image frames. The difference in position is the velocity 
of the target. This means that any measurement errors 
that cancel out in this measurement will not affect the 
fundamental quantities of velocity and acceleration. 

We will use the test setup shown in Figure 6, in which 
the cameras are located 2.5 m from the plane of motion 
with a 2 m Field Of View (FOV) perpendicular to the 
LOS where the LOS intercepts the plane of motion. In 
order to provide a view into the vehicle unobstructed by 
door supports, the cameras are constrained to a 1.5 m 
baseline. The cameras are located at the same vertical 
height as the target. We assume 1000x1000 pixel 
cameras as this represents the state of the art in high 
speed digital electronic cameras and is comparable to 
the resolution achievable with 16 mm film. The test 
setup uses a laboratory defined Cartesian coordinate 
system. 

We define a right handed coordinate system with the 
origin at the point of intersection of the LOS of the 
cameras, such that positive x increases horizontally to 

the right, positive z increases upward (out of the paper), 
and positive y increases as shown. The cameras are 
then located at positions (-0.75, -2.5, 0) and (0.75, -2.5, 
0). 
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Figure 6. Test setup showing camera locations, separation angle, FOV. 

We assume that we can measure camera locations to 
within σpos = 3 mm (either directly or through calibration) 
and LOS to within 1 pixel. We further assume that 
geometric lens distortion inherent in wide-angle lenses 
can be removed during post-processing of the image 
data, and that a track accuracy of 0.5 pixels can be 
achieved. The total LOS error is the quadrature sum of 
the sensor LOS and the target position error, or σθ = σϕ 

= 22 5.01 +  = 1.1 pixels. Note that the track accuracy 
measurement is the only parameter whose value will 
change throughout the experiment, and that all of the 
other measurements errors described here (camera 
location and LOS) are static (of course this statement 
only applies to the described setup, other applications, 
for example using tracking mounts, will have more 
dynamic parameters). 

With this simple description we will quickly compute 
values for the camera-target-camera separation angle, 
the camera pointing angles, the angular FOV, and the 
Incremental Field Of View (IFOV) of a single pixel. 
Armed with this information we can readily apply the 
results of section 2 to obtain estimates of the 3D position 
accuracy. The cameras will have a separation angle of 
33.4 degrees, a range to the origin of 2.6 m, azimuth 
pointing of 16.7 and –16.7 degrees (both with an 
elevation angle of 0 degrees), a horizontal FOV of 41.93 
degrees, and an IFOV of 732 micro-radians. This allows 
us to convert the LOS error from pixel units to angular 
units: σθ = σϕ = 805 micro-radians = 0.046 degrees. 

The next task is to determine the error coefficients in 
equations (5)-(8), from the graphs in section 2. For each 
of the first 6 coefficients, we refer to the appropriate 
graph in Figure 3 and 4 and read off the value for a 
sensor-to-sensor separation angle of 33 degrees. For 
the last two (z position coefficients) we refer to the 
graphs in Figure 5 and read off the value for a 0 degree 
elevation angle. The results are shown in Table 1. 



Table 1. Measurement error coefficients for 33 
degree sensor separation 

Inserting these values into equations (5)-(8), along with 
the horizontal sensor to target range of 2.6 m and our 
measurement error values of σpos = 0.003 m and σθ = σϕ 
= 0.046°, we obtain estimates of our target position 
error. In table 2, we show the error contribution for 
position measurement error, LOS measurement error, 
and the total measurement error. Overall, we are seeing 
about 6 mm accuracy (with slightly more coming from 
sensor position error than from sensor to target LOS 
error) in our target position estimates (4 mm in z). Recall 
that this is for 33° separation and a 2.6 m sensor to 
target range. 

Table 2. Target position error estimates for 33 
degree sensor separation 

Target 
parameter 

Error (m) 
from 

position 
error σpos 

Error (m) 
from LOS 

error, 
σLOS 

Total 
error(m) 

xt 0.0053 0.0037 0.0065 
yt 0.0053 0.0037 0.0065 
r 0.0072 0.0046 0.0085 
zt 0.003 0.0020 0.0036 

 

It is interesting to inquire how much of this error 
represents a constant bias error for the experiment, and 
how much is dynamic within the experiment. The only 
dynamic measurement is the target location 
measurement within the image. Recall that we estimated 
a 0.5 pixel estimation accuracy for the target location. 
This corresponds to a 366 micro-radian accuracy or 
0.021 degrees. From equations (5)-(8), we can estimate 
the track error contribution as shown in table 3. We see 
our ½ pixel tracking accuracy gives about 2 mm frame-
to-frame accuracy for this test setup. 

Table 3. Position error (m) from tracking error for 33 
degree sensor separation 

It is interesting to compare this with a single sensor, 2D 
calibration measurement. Using a single sensor, one 
assumes that all motion is in a plane, and that one has a 
known calibration object in the plane of the motion. One 
then measures the distance in pixels between two points 
on the calibration object, and obtains an estimate of the 
conversion from pixels to meters (or whatever linear 
units are being used). In our case, we know we have a 2 
m FOV with 1000 pixels across, so we have 2 mm per 
pixel. With a ½ pixel tracking accuracy, this method will 
yield a 1 mm frame to frame tracking accuracy. Of 

course, if the reference object is not in the plane of the 
target motion, the calibration will be off and the actual 

results will be worse than predicted here. 

Coef. c(x,pos) c(y,pos) c(x,LOS) c(y,LOS) c(r,pos) c(r,LOS) c(z, LOS) c(z,r)
Value 1.778 1.778 0.031 0.031 2.403 0.038 0.017 0

If we consider ways to improve the accuracy of our 
measurement, we need to consider whether we need to 
improve the absolute position measurement, or only the 
object to object and frame-to-frame position accuracy. 
Since the target position error due to sensor location 
error is about equal to the error due to LOS error, if we 
are concerned with absolute position accuracy, we need 
to concentrate equally on both. If we are only concerned 
with object to object and frame-to-frame tracking 
accuracy, then we need only concentrate on the LOS 
error related to tracking error. In either case, the easiest 
thing we can consider is to increase the sensor to 
sensor separation angle toward 90 degrees. This will 
have the effect of reducing all of the error coefficients. 

Since the error related to sensor position measurements 
does not depend on sensor to target range, the only 
other thing which can be done to reduce this term is to 
improve the sensor location measurement, i.e. reduce 
σpos. 

In order to reduce contributions due to LOS error, we 
can seek to reduce our measurement error. 
Improvement in our absolute sensor pointing knowledge 
will reduce our absolute position errors, while 
improvement in our tracking accuracy will reduce both 
our absolute errors and our target to target or frame-to-
frame errors. Reduction of these errors can be 
accomplished either by improving the basic 
measurement (sensor pointing to better than 1 pixel, 
tracking to better than ½ pixel), or we could attempt to 
reduce the IFOV. However that involves either adding 
more pixels within the FOV (i.e a higher resolution 
camera), or reducing the FOV, which may not be 
possible due to experimental constraints. Of course both 
improved tracking accuracy or reduced IFOV could 
equally well be applied to a 2D scaling approach. 
Reducing the sensor to target range will reduce the 
range factor in the LOS error term in equations (5)-(8), 
however, assuming that we have to increase the angular 
FOV in order to maintain our 2 m coverage, this will 
increase the IFOV by an approximately equal factor, 
resulting in no net change. 

xt yt r zt
0.0017 0.0017 0.0021 0.0009

Since increasing the sensor-to-sensor separation angle 
is the easiest thing which can be done to reduce the 
effect of measurement errors, it is worth asking how 
much we can reduce our errors by increasing the 
separation from 33 to 90 degrees. The error coefficients 
for a 90 degree separation are given in table 4. 
Examining only the ½ pixel tracking error given in table 
5, we find that our object to object or frame-to-frame 
error has been reduced to about 1 mm. 



 

Table 4. Measurement error coefficients for 90 
degree sensor separation 

Table 5. Position error (m) from tracking error for 90 
degree sensor separation 

4. FROM ACCURACY REQUIREMENTS TO TEST 
SETUP 

In this section we begin with a requirement to obtain 1 
mm frame to frame track accuracy and an overall 5 mm 
absolute position accuracy. We are constrained by 
technology to a 1000x1000 pixel sensor and by the 
needs of the experiment, to cover a FOV at the target 
range of 2 m. The parameters at our disposal are the 
geometry (sensor to sensor separation angle and sensor 
to target range, and hence to angular FOV and the 
IFOV), and the sensor location and LOS pointing 
measurement error. We accept a 0.5 pixel tracking 
accuracy as given. 

There are many ways to approach this problem. We 
begin by addressing the 1 mm frame to frame accuracy 
requirement. For this, only the tracking accuracy 
matters, and equation (5) may be reduced to equation 
(9): 

IFOVrcrc pixxxxt
σσσ θθθ ,, ==      (9) 

Our 1 mm frame-to-frame target position requirement is 
σx, r is the sensor to target horizontal range, and σθ is 
our angular measurement error: tracking error in pixels 
(σpix) multiplied by the IFOV. We can use these to place 
a limit on cx,θ and this in turn can be used to specify a 
minimum sensor to sensor separation angle. The IFOV 
is related to the sensor to target range r, the target plane 
FOV (d = 2 m), and the sensor pixel count (Nx = 1000) 
by equation (10): 

πxNr
dIFOV 180
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Assuming that d/2r is sufficiently small that we ignore the 
difference between d/2r and tan-1(d/2r), we can insert 
this into equation (9) and solve for cx,θ, giving equation 
(11): 

180,
π

σ
σ

θ d
Nc x

pix

x
x =        (11) 

We observe that the sensor to target range has 
cancelled out. Inserting values for our pixel count, 
tracking accuracy, FOV coverage, and accuracy 
requirement, we obtain a value of cx,θ = 0.017. Referring 
to Figure 3, this can only be achieved with a sensor-to-

sensor separation angle of 90 degrees. Equation (11) 
also tells us that if we cannot arrange to have this ideal 
geometry, we must either increase our sensor pixel 
count, decrease our track error, or decrease our FOV 
coverage. Note that we could look up the value of cx,θ for 
a separation angle of 90 degrees and then examine the 
trade-off between accuracy requirements for target 
location and tracking measurement accuracy, FOV 
coverage, or sensor pixel count. 

Coef. c(x,pos) c(y,pos) c(x,LOS) c(y,LOS) c(r,pos) c(r,LOS) c(z, LOS) c(z,r)
Value 1 1 0.017 0.017 1.414 0.017 0.017 0

xt yt r zt
0.0009 0.0009 0.0009 0.0009

Having established our separation angle, we now need 
to determine the sensor LOS accuracy and sensor 
location accuracy necessary to meet our absolute 
position requirement of 5 mm. We begin by once again 
re-writing equation (5), this time splitting out the tracking 
error (1 mm) and using equation (10). Our sensor LOS 
error (e.g. 1 pixel) is σLOS. 
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      (12) 

All of the numbers here are now known quantities except 
the sensor location error and the sensor LOS error. 
Looking up values for the error coefficients (Figure 3) at 
a separation angle of 90 degrees, equation (12) reduces 
to: 

22222 )/9.1()1()5( LOSpos pixelmmmmmm σσ ++=     
      (13) 

This result can be used to partition measurement errors 
between the sensor LOS accuracy (in pixels) and the 
sensor location accuracy. If we assume that we can 
align our LOS to within 1 pixel, then we are left with σpos 
= 4.5 mm for our sensor location error. 

The sensor-to-target range has not been specified. It 
turns out that for low elevation angles, this is not 
important. This allows the test designer to adjust the 
sensor to target range to match the FOV of a given focal 
length lens to the FOV coverage requirement. Of course, 
as range is increased the baseline distance between 
sensors must be increased in order to maintain a 
constant separation angle. 

5. SUMMARY 

This paper has extended previous work by simplifying 
the working equations and providing simplified graphs of 



the error propagation coefficients for two-sensor, 3D 
triangulation. This serves to make the basic error 
estimation procedure more accessible and less error 
prone. 

This work uses these results to show how to analyze the 
accuracy of a triangulation system typical of automotive 
crash test applications. For the typical test setup 
described, a tracking accuracy of 2 mm was predicted, 
with an absolute position accuracy of 6 mm. These 
results were compared with the accuracy expected from 
the more common single sensor approach in which a 
reference object in the imagery is used to calibrate 
target motion in a plane. The single camera scaling 
approach was predicted to give an accuracy of 1 mm. 
Increasing the sensor-to-sensor separation angle to 90° 
was found to improve the triangulation accuracy to 1 
mm, matching but not exceeding that of the single 
sensor approach. The conclusion to be drawn from this 
is that while the triangulation approach offers significant 
advantages for studying non-planar motion, or for 
tracking targets for which no suitable calibration objects 
are present, this approach will not exceed the accuracy 
of a well designed single sensor system when studying 
planar target motion. 

This paper also presented a methodology to work from a 
given accuracy requirement to a test setup design, again 
using the simplified error coefficient graphs developed at 
the beginning of this work. In particular, equation (11) 
relates frame to frame target location accuracy 
(essential for good velocity estimates) to target tracking 
accuracy (in pixels), sensor pixel count, target plane 
coverage, and the error propagation coefficient. This in 
turn allows one to determine the minimum sensor 
separation angle. 

While this paper addresses the impact of measurement 
error in a triangulation system, it does not address how 
to make sensor location and LOS measurements or 
calibration. However, a basic discussion of some of the 
contributing error sources has also been provided. 
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